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Sorin Tănase-Nicola,1 Patrick B. Warren,2 and Pieter Rein ten Wolde1

1FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
2Unilever R&D Port Sunlight, Bebington, Wirral, CH63 3JW, United Kingdom

(Received 23 March 2006; published 8 August 2006)

We present an expression for the power spectrum of the output signal of a biochemical network, which
reveals that the reactions that allow a network to detect biochemical signals, induce correlations between
the extrinsic noise of the input signals and the intrinsic noise of the reactions that form the network. We
show that anticorrelations between the extrinsic and intrinsic noise enhance the robustness of zero-order
ultrasensitive networks to biochemical noise. We discuss the consequences for a modular description of
noise transmission using the mitogen-activated protein kinase cascade.
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It is increasingly becoming recognized that understand-
ing cell function requires an accurate description of noise
propagation through biochemical networks [1]. The com-
plete biochemical network of a living cell consists of a
huge number of biochemical reactions. This precludes a
detailed mesoscopic description of noise propagation.
However, it is believed that biochemical networks are
modular in design, which means that they can be decom-
posed into smaller, functionally independent units [2]. This
is potentially useful, because it would make it possible to
coarse grain the full network of individual reactions to a
smaller network consisting of modules, where each module
is described as a ‘‘black box’’ with input and output
signals; the reactions that constitute each module would
then be integrated into the input-output relations [3]. Here
we address the question whether modularity can be ex-
ploited for developing a coarse-grained description of
noise transmission.

Recently, several groups have derived analytical expres-
sions for the noise in the output signal of a network as a
function of the noise in the input signal, the extrinsic noise,
and the noise in the biochemical reactions that constitute
the network, the intrinsic noise [4–7]. These results sug-
gest that the input-output relations for the noise of the
individual modules of a network can be combined in a
simple way to quantify the transmission of noise through
the full network [4,5,7]. However, these studies assume
that the extrinsic and intrinsic noise are independent
sources of noise [4–7]. Here, we show that the biochemical
reactions that allow a module to detect the incoming
signals introduce correlations between the extrinsic and
intrinsic noise. These correlations can strongly affect the
propagation of noise through the network, as we illustrate
for the mitogen-activated protein kinase (MAPK) cascade.
Moreover, we show that correlations between extrinsic and
intrinsic noise preclude a quantitative modular description
of noise propagation through large scale biochemical net-
works. Our analysis also reveals the conditions under
which the detection reactions do not introduce correlations

between the extrinsic and intrinsic noise; under these con-
ditions, a modular description of noise transmission can be
developed.

Noise addition rule: Uncorrelated extrinsic and intrinsic
noise.—We consider a module with one input and one
output signal. We assume that the system is in steady state
and that the fluctuations of the incoming and outgoing
signals around their steady-state values are small; this
allows us to linearize the coupling between them and to
use the linear-noise approximation [8]. Moreover, we will
here assume that the noise in the input is uncorrelated from
that in the processing network and that the output signal
relaxes exponentially with decay rate �. This yields the
following chemical Langevin equation

 _x � �s�t� ��x� ��t�: (1)

Here, s � S� hSi is the deviation of the number of signal-
ing molecules, S, from its mean, hSi, and x � X� hXi is
the corresponding quantity for the output signal; � corre-
sponds to the differential gain and the dot denotes a time
derivative. The last term, ��t�, describes the noise in the
reactions that constitute the processing unit. We model��t�
as Gaussian white noise: h��t�i � 0 and h��t���t0�i �
h�2i��t� t0�. Fourier transforming Eq. (1) yields the
power spectrum for the outgoing signal:

 Ssa
X �!� � hj~x�!�j

2i �
2�2

in�

�2 �!2 � ~g�!�SS�!�; (2)

where �2
in � h�

2i=�2�� is the intrinsic noise, ~g�!� �
�2=��2 �!2� is the frequency-dependent gain, and
SS�!� � hj~s�!�j2i is the power spectrum of the input. A
similar expression has been obtained recently [4,7,9]. It
suggests that the spectrum of the output can be written as a
sum of an intrinsic (first term) and an extrinsic contribution
(second term). We therefore refer to Eq. (2) as the spectral
addition rule. It is a consequence of the assumption that
s�t� and ��t� are uncorrelated.

If the noise in the input signal has an amplitude �2
s and

decays monoexponentially with a relaxation rate �, then
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the output noise, obtained by integrating Eq. (2), is

 �2
tot � �2

in � g
2 hXi

2

hSi2
�

���
�2

s � �2
in � �

2
ex: (3)

Here, g � @ lnhXi=@ lnhSi is the logarithmic gain and �2
ex

is the extrinsic noise. This ‘‘noise addition’’ rule has been
derived by Paulsson [6] and Shibata and Fujimoto [7]. It is
only valid if the input signal has a single exponential
relaxation time and if the spectral addition rule, Eq. (2),
holds, which means that the extrinsic and intrinsic noise
must be uncorrelated [10].

Equation (2) suggests that the extrinsic contribution to
the power spectrum of the output signal can be factorized
into a function that only depends upon intrinsic properties
of the module, namely ~g�!�, and one that only depends
upon the input signal, SS�!�. This would be highly useful,
because it would allow a modular description of noise
propagation. If, for instance, the network consists of a
number of modules connected in series, then, once the
intrinsic noise of each of the modules is known, the propa-
gation of noise through the network could be obtained for
arbitrarily varying input signals by a recursive application
of the spectral addition rule, Eq. (2), to the successive
modules [4,5]. However, this approach requires that the
spectral addition rule holds for each of the individual
modules. Below, we will show that the detection reactions
can introduce correlations between the extrinsic and intrin-
sic noise. These obscure the distinction between the two
noise sources and lead to a break down of the spectral
addition rule, thereby impeding a modular description of
noise propagation.

Correlated extrinsic and intrinsic noise.—We consider a
module that consists of one component only. This compo-
nent X, both detects the input S and provides the output
signal. Below, we discuss more complex modules. To
capture the correlations, we explicitly describe the detec-
tion of the signal by studying the coupled Langevin equa-
tions for the interacting species, S and X:

 _s � ��s� �x� ��t�; _x � �s��x� ��t�: (4)

Here, � describes how the fluctuations of the input signal
are affected by those of the detection component; we
model the noise in s, ��t�, also as a Gaussian white noise,
h��t�i � 0, h��t���t0�i � h�2i��t� t0�, correlated with the
noise in x: h��t���t0�i � h��i��t� t0� [10]. Equation (4)
can be solved using Fourier transformation, which gives

 

SS�!� �
�2h�2i � 2��h��i � ��2�!2�h�2i

�������2� ��2� 2����2�!2�!4 ; (5a)

SX�!� �
h�2i��2�!2� � 2��h��i � �2h�2i

�������2� ��2� 2����2�!2�!4 : (5b)

In contrast to Eqs. (2), Eqs. (5) take into account the
correlations between the extrinsic and intrinsic noise.

Equations (5) reveal that the correlations between ex-
trinsic and intrinsic noise can have two distinct origins,
corresponding to a nonzero value of � and h��i. To eluci-
date their effects on noise transmission, we consider the
difference �SX�!� � SX�!� � Ssa

X �!� between the full re-
sult of Eq. (5b) and the spectral addition rule of Eq. (2). In
the linear limit of small � and h��i, this is given by

 �SX�!� ’
2�

�2 �!2

�
h��i�

�2 �!2 �
�h�2i����!2�

��2 �!2�2

�
: (6)

The first source of correlations, quantified via �, is
present when the dynamics of the processing unit (intrinsic
noise) acts back on that of the input signal (extrinsic noise).
This happens in the first of the three elementary detection
motifs presented in Table I. Here, a negative feedback
arises from the unbinding of signaling molecules from
the detection molecules (� � �). Equation (6) reveals
that this feedback decreases the low-frequency fluctua-
tions, while transferring part of the noise to the high-
frequency regime of the power spectrum. This could be ad-
vantageous, because high-frequency fluctuations are usu-
ally filtered more effectively by the network downstream.

The second source, quantified via h��t���t0�i, is the
correlated fluctuations in the number of signaling and
detection molecules, due to the detection reactions. This
source is present in schemes I and II of Table I, where, each
time a detection reaction fires, a signaling molecule is
consumed and simultaneously a molecule of the processing
module is produced (or activated). Additionally, for
scheme I, the unbinding reactions also lead to cross corre-
lations in ��t� and ��t�. For I, h��i � ���hSi ��hXi�,
while for II, h��i � ��hSi [11]. Equation (6), which,
incidentally, is exact when � � 0, shows that these nega-
tive cross correlations reduce the output noise, especially
in the low-frequency regime.

For detection motif III, � and h��i are zero. Here, the
detection reactions do not affect the signal in any way. The
extrinsic and intrinsic noise are therefore uncorrelated and

TABLE I. Three elementary detection motifs. X is the output and S is the input signal; in I, W is the inactive (unbound) state of the
detection component and X the active (bound) state. While all schemes obey dhXi=dt � �hSi ��hXi, the noise is transmitted
differently, due to the different sources of correlations between extrinsic and intrinsic noise.

Scheme Examples

(I) S�W ! 
��kfW

�
X ligand-receptor binding, enzyme-substrate binding, transcription factor-DNA binding

(II) S!
�

X!
�
; post-translational modification, endocytosis of activated trans-membrane receptors

(III) S!
�

S� X, X!
�
; coarse-grained models, enzymatic reactions, and gene expression
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the spectral addition rule, Eq. (2), holds. Since, in this
example, the input signal relaxes monoexponentially, also
the noise addition rule, Eq. (3), holds.

The above analysis can be generalized to modules that
consist of an arbitrary number of linear(ized) reactions and
that have more than one input [10]. If and only if all the
input signals are detected via detection motif III, a spectral
addition rule analogous to Eq. (2) can be derived, allowing
for a modular description [10]. Finally, spatial fluctuations,
which have been ignored here, will change the power
spectra [12]. If, however, their nontrivial effects in the
high-frequency regime are not important, because they
are filtered by the network, then it might be possible to
include the consequences of diffusion in a ‘‘well-stirred’’
model, by describing the low-frequency effects via re-
normalizing the reaction rates [12].

Zero-order ultrasensitivity.—We illustrate the conse-
quences of correlated extrinsic and intrinsic noise for the
amplification mechanism of zero-order ultrasensitivity
[13]. This operates in push-pull networks, where two en-
zymes covalently modify a component (see also Fig. 2):

 E a �W! 
a1

d1

EaW!
k1

Ea � X; Ed � X! 
a2

d2

EdX!
k2

Ed �W:

(7)

Ea is the activating enzyme that provides the input and Ed is
the deactivating enzyme, the unmodified component W
serves as the detection component, and the modified com-
ponent X provides the output. When the substrate concen-
tration is increased, the enzymes become more saturated
with substrate, and the (de)modification rates become more
‘‘zero order’’ in substrate concentration [13]. This in-
creases the sharpness of the response (the gain) markedly
[13], as Figs. 1(a)–1(c) show. The amplification mecha-
nism of zero-order ultrasensitivity thus relies on enzyme
saturation, which means that the signaling molecules Ea

must be strongly bound to the detection molecules W. This
has important consequences for the transmission of noise,
as we will now discuss.

Figures 1(b)–1(d) show the noise in the output X of the
network in Eq. (7); the input Ea is modeled as a birth-death
process, corresponding to (de)activation of Ea. The analy-
sis has been performed using the linear-noise approxima-
tion [8,10]. Figure 1(d) shows that as the substrate
concentration is increased, the noise in the output also
increases. This has been observed before [7,14]: the higher
gain [see Fig. 1(c)], not only amplifies the mean, but also
the noise of the input signal Ea, the extrinsic noise [see
Eq. (2)] [7]; in addition, when the (de)modification reac-
tions become more zero order, their intrinsic fluctuations
also increase [14]. However, Fig. 1(d) also shows that the
actual increase in the output noise is much smaller than that
predicted by the spectral addition rule. This is a result of
the anticorrelations between the extrinsic and intrinsic
noise. These reduce the noise, but are neglected by the
spectral addition rule. Moreover, they become more sig-

nificant as the network moves deeper into the zero-order
regime: as the enzymes become more saturated, the input
signal Ea is increasingly being affected by its interaction
with the detection component W. While it has been known
that fluctuations can adversely affect the performance of
push-pull networks [1,14], our results reveal that anticor-
related fluctuations between different noise sources can
enhance their performance by increasing the signal-to-
noise ratio.

Modularity and the MAPK cascade.—We discuss the
implications of the correlations between the extrinsic and
intrinsic noise for a modular description of noise trans-
mission using the Mos=MEK=p42 MAPK cascade

MAPKK

MAPKKK

E2

E1

MosMAPKKK*

MAPK P’ase

MAPKK−PP MEKMAPKK−P

MAPKK P’ase

MAPK MAPK−P MAPK−PP 

FIG. 2. The Mos=MEK=p42 MAPK cascade. This network
consists of three tiers, which, from a topological point of view,
could be regarded as modules. The tiers consists of push-pull
networks, where the activity of an enzyme is covalently modified
by the action of two opposing enzymes [see Eq. (7)].
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FIG. 1. Gain @hXi=@hEaTi and output noise �2
X=hXi for the

network of Eq. (7). The response (dotted curve), gain (a) and
output noise (b) as a function of �EaT�=�EdT�, for �WT� � �XT� �
10 �M and �EdT� � 0:1 �M (subscript T denotes total species
concentration). The gain (c) and output noise (d) as a function of
�WT�=�EaT�, for �EaT� � �EdT� � 0:1 �M and �WT� � �XT�. In
(b) and (d), the dashed curves correspond to the predictions of
the spectral addition rule [Eq. (2)], and the solid lines correspond
to the analysis that takes into account the correlations between
extrinsic and intrinsic noise. Panel (d) shows that the actual
increase in output noise due to enzyme saturation is much lower
than that predicted by the spectral addition rule. KM;Ea

�

KM;Ed
� 1 �M; the decay rate of Ea is � � 30k1, and a1 �

a2 � 0:1k1.
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[3,10,15] (see Fig. 2). From a topological point of view,
this network consists of three push-pull modules that are
connected in series. Table II shows the noise in the output
signals of the three modules, as predicted by an iterative
application of the spectral addition rule [Eq. (2)], and as
revealed by an analysis that takes into account the corre-
lations between the extrinsic and intrinsic noise of each
module [10]. The spectral addition rule significantly over-
estimates the propagation of noise: the noise in MAPK, the
output of the cascade, is about 50% lower than that pre-
dicted by the spectral addition rule. This supports our
conclusion that anticorrelations between the extrinsic and
intrinsic noise can make biochemical networks more ro-
bust against biochemical noise.

Table II also illustrates under which conditions modu-
larity can be exploited for a coarse-grained description
of noise transmission. Analysis III refers to a calculation
that takes into account the correlations between the noise
in the output signal of the first layer, Mos	, and the in-
trinsic noise of the second layer, the fluctuations in the
(de)modification reactions of MEK; however, it ignores
the correlations between the output signal of the second
layer and the intrinsic noise of the third layer. Similarly,
analysis IV corresponds to a description, in which the first
layer forms one module, whereas the second and third
layer form a second, independent module. It is seen that
while the former description is fairly accurate, the latter
significantly overestimates the noise in the output signal
of the cascade. This shows that while the correlations
between extrinsic and intrinsic noise are not very important
for the transmission of noise from the second to the third
layer, these correlations do affect the propagation of noise
from the first to the second layer. The reason for this is
that active Mos is more saturated with its substrate, MEK,
than active MEK is with its substrate, MAPK (see also
Fig. 1).

In summary, our analysis demonstrates that, from the
perspective of noise transmission, a network can be decom-
posed into modules only if the signals that connect them
are detected via reactions that do not introduce significant
correlations between the noise in these signals and the
intrinsic noise of the modules. When these correlations
are important, then the propagation of noise can only be
quantified accurately if the correlated subnetworks are

regrouped into independent modules. Finally, we believe
that the predictions of our analysis could be tested by
performing fluorescence resonance energy transfer
(FRET) or fluorescence correlation spectroscopy experi-
ments [16]. By putting a FRET donor on MEK, and a
FRET acceptor on both the enzyme of the upstream mod-
ule, Mos, and that of the downstream module, MAPK, it
should be possible to study the effect of correlations be-
tween extrinsic and intrinsic noise on the transmission of
noise in signal transduction cascades.

We thank D. Frenkel, B. Mulder, R. Allen, and
M. Howard for a critical reading of the manuscript. This
work is supported by the ACCS and FOM/NWO.

[1] C. V. Rao, D. M. Wolf, and A. P. Arkin, Nature (London)
420, 231 (2002); M. Kaern et al., Nature Rev. Genetics 6,
451 (2005).

[2] L. H. Hartwell et al., Nature (London) 402, C47 (1999);
N. Kashtan and U. Alon, Proc. Natl. Acad. Sci. U.S.A.
102, 13 773 (2005).

[3] D. Angeli, J. E. Ferrell, Jr., and E. D. Sontag, Proc. Natl.
Acad. Sci. U.S.A. 101, 1822 (2004).

[4] P. B. Detwiler et al., Biophys. J. 79, 2801 (2000).
[5] M. Thattai and A. van Oudenaarden, Biophys. J. 82, 2943

(2002).
[6] J. Paulsson, Nature (London) 427, 415 (2004).
[7] T. Shibata and K. Fujimoto, Proc. Natl. Acad. Sci. U.S.A.

102, 331 (2005).
[8] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1992).
[9] M. L. Simpson, C. D. Cox, and G. S. Sayler, J. Theor. Biol.

229, 383 (2004).
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TABLE II. Noise in the Mos=MEK=p42 MAPK cascade (see Fig. 2). In I, the transmission of noise was computed by studying all the
reactions together. In II, the spectral addition rule has been applied iteratively to the successive layers, thus assuming they form
independent modules. In III (IV) the first (last) two layers were considered to form one module, while the other layer was assumed to
form an independent module. Note that the correlations between the noise in active Mos and the intrinsic fluctuations of MEK strongly
affect the transmitted noise. The concentrations are: �Mos� � 3 nM; �MEK� � 1200 nM; �MAPK� � 300 nM (see also [3,10,15]).

�2
Mos	=�Mos	� �2

MEK�PP=�MEK� PP� �2
MAPK�PP=�MAPK� PP�

I: Fully coupled 0.643 90.3 2.25
II: All uncoupled 0.727 168.0 3.75
III: Coupled Mos & MEK 0.643 91.1 2.26
IV: Coupled MEK & MAPK 0.727 166.0 3.72
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